

New Cyanine Dyes: Norindosquarocyanines

Serguei Miltsov, Cristina Encinas, Julián Alonso*

Grup de Sensors i Biosensors, Unitat de Química Analítica, Facultat de Ciències, Universitat Autònoma de Barcelona, 08293 Bellaterra, Spain

Fax: 34-93-5812477, e-mail: jach@gsb.uab.es

Received 12 February 1999; accepted 29 March 1999

Abstract:

Synthesis of new acidochromic-based dyes is presented. The dyes obtained have acid absorbance maxima at 640-700 nm and expose spectral changes in the pH-range from 8 to 12. © 1999 Elsevier Science Ltd. All rights reserved.

It is known that squaric acid undergoes base-catalyzed condensation with quaternary salts of certain heterocycles possessing activated methyl groups forming squarilium dyes 1^{1,2} (Scheme 1).

2
$$X \xrightarrow{Z} + HO$$
 OH base $X \xrightarrow{R} = alkyl$ $Z = S$, $C(CH_3)_2$

Scheme 1

We have found that free bases of substituted 2,3,3-trimethylindolenines 2a-g react with squaric acid under acid catalysis resulting in norindosquarilium dyes 3a-g in high yields (Scheme 2, Table 1).³

Scheme 2

Product	X	Yield (%)	λ _{mex} acid (nm)	λ _{max} base (nm)	pKa
3a	H	77	649	509	11.9
3b	[4,5]benz-	80	680	535	11.6
3c	5-N ₂ O	80	666	581	8.3
3d	5-CH ₃ CONH	67	676	523	11.5
3e*	5-NH ₂	32	698	518	12.0
3f	5-OH	78	679	440	11.4
3g	5-C ₄ H ₉	45	660	515	12.6

*obtained by deacetylation of 3d with BF₃·CH₃OH⁴

The protonated forms of the dyes **3a-g** have absorbance maxima close to those of alkylated analogues.^{1,2} Determination of pKa values⁵ was undertaken in ethanol:universal buffer (50:50) (Fig.1).

Forth-and-back experiments showed complete reversibility of spectral changes. Some of the dyes obtained can be used as pH-sensitive components of optical sensors with commercial laser diodes emitting at 680nm.

Figure 1. Absorbance spectra of the dye 3b at indicated pH values.

Acknowledgements

This work was financially supported by the Spanish "Comisión Interministerial de Ciencia y Tecnología" (Projects TIC93-0525 and TIC97-0594-C04-02). Serguei Miltsov was supported by the MEC under a grant from the Sabatic Program (SAB95-0283).

References and notes

- [1] Kuramoto N, Natsukawa K, Asao K Dyes and Pigments 1989;11:21-35.
- [2] Terpetschnig E, Szmacinski H, Lakowicz J.R. Analytica Chimica Acta 1993;282,633-641.
- [3] Representative procedure for 3a: 637 mg (4mmol) of 2a, 228 mg (2mmnol) of squaric acid and 500mg of p-toluenesulfonic acid monohydrate in a mixture of 20ml butanol and 10ml benzene were heated at reflux for 2h.; the water was removed azeotropically using a Dean-Stark trap. The resulting crystals were filtered out and washed with ether. Recrystallization from methanol and drying yielded 611 mg of 3a (77%): ε_{acid} = 1.61·10⁵, ¹H-NMR (250MHz, DMSO-d⁶): δ ppm, J Hz; 1.44 (s, 12H). 5.55 (s, 2H), 7.09-7.49 (m, 8H); Analysis: calculated for C₂₆H₂₄O₂N₂, C, 78.76; H, 6.1; N, 7.07. Found, C, 78.78; H, 5.98; N, 6.93. MALDI m/z 396.9 (M⁺, 100), 397.9 (M⁺+H⁺, 98).
- [4] Sihlbom L Acta Chem. Scand. 1954;8:529-530.
- [5] The average pKa are calculated using the following equation: pKa = pH log $[(A_{max}-A)/(A-A_{min})]$.